
PHYSICAL REVIEW E SEPTEMBER 1999VOLUME 60, NUMBER 3
Cluster analysis and finite-size scaling for Ising spin systems
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Based on the connection between the Ising model and a correlated percolation model, we calculate the
distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs withn percolating
clusters,f n(c), and the distribution function for magnetization (m) in subgraphs withn percolating clusters,
pn(m). We find thatf n(c) andpn(m) have very good finite-size scaling behavior and that they have universal
finite-size scaling functions for the model on square, plane triangular, and honeycomb lattices when aspect
ratios of these lattices have the proportions 1:A3/2:A3. The complex structure of the magnetization distribu-
tion functionp(m) for the system with large aspect ratio could be understood from the independent orienta-
tions of two or more percolation clusters in such a system.@S1063-651X~99!09609-9#

PACS number~s!: 05.50.1q, 64.60.Ak, 75.10.2b
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Universality and scaling are two important concepts in
modern era of critical phenomena@1# and, for analyzing the
simulation or experimental data of finite critical systems, o
often appeals to finite-size scaling@2–4# where both critical
exponents and finite-size scaling functions play an impor
role. The universality of critical exponents has been w
known for a long time@1#, but the universality of finite-size
scaling functions received much attention only in rec
years@5–10#. In 1984, Privman and Fisher first proposed t
idea of universal finite-size scaling functions~UFSSF’s! with
nonuniversal metric factors@3#. In 1995 and 1996, Hu, Lin
and Chen~HLC! @5# applied a histogram Monte Carlo simu
lation method@11# to calculate the existence probability@11#
~also called the crossing probability@12#! Ep , the percolation
probability P, the probability for the appearance ofn perco-
lating clustersWn @5# of site and bond percolation on finit
square~sq!, plane triangular~pt!, and honeycomb~hc! lat-
tices, whose aspect ratios approximately have the rela
proportions 1:A3/2:A3 considered by Langlandset al. @12#.
Using nonuniversal metric factors, HLC found that the s
percolation models have very nice UFSSF’s forEp , P, and
Wn near the critical points@5# and, at the critical point, the
average number of percolating clusters increases line
with aspect ratios of the lattices@5#. Using the Monte Carlo
simulation, Okabe and Kikuchi found UFSSF’s for th
Binder parameterg @13# and magnetization distribution func
tions p(m) of the Ising model on planar lattices@6#, and
Wang and Hu found UFSSF’s for dynamic critical pheno
ena of the Ising model@7#. Based on the connection betwee
the q-state bond correlated percolation model~BCPM! and
the q-state Potts model@14# Hu, Chen, and Lin found
UFSSF’s forEp andWn of the q-state BCPM without using
nonuniversal metric factors@9#. It is of interest to gain a
deeper understanding of the UFSSF’s forWn andP for the
system with multiple percolating clusters.
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In this paper, based on the connection between the Is
model, i.e., the two-state Potts model and the two-s
BCPM, we use the Monte Carlo method to calculate
distribution function for the fraction (c) of lattice sites in
percolating clusters in subgraphs withn percolating clusters,
f n(c), and the distribution function for magnetization (m) in
subgraphs withn percolating clusters,pn(m). We find that
f n(c) andpn(m) have very good finite-size scaling behavi
and that they have UFSSF’s for the model on sq, pt, and
lattices when aspect ratios of these lattices have the pro
tions 1:A3/2:A3. SinceWn andP of the two-state BCPM for
the Ising model may be calculated fromf n(c), the universal-
ity of finite-size scaling functions forWn andP are related to
the universality of finite-size scaling functions forf n(c). The
complex structure ofp(m) for the system with a large aspe
ratio could be understood from the independent orientati
of two or more percolation clusters in such a system. O
work suggests many problems for further research.

The Hamiltonian of the Ising model on anL13L2 lattice
G of Nb bonds is given byH52J(^ i , j &s is j2h( is i , where
s i561, J.0 and is the ferromagnetic coupling consta
between the nearest-neighbor Ising spins, andh is the exter-
nal magnetic field. Using subgraph expansion, Hu@14#
showed that the partition function of the Ising model onG
may be written as

ZN5eKNb (
G8#G

pb(G8)~12p!Nb2b(G8)

3 )
cluster

@2 cosh„Bnc~G8!…#, ~1!

wherep512e22K, K5J/(kBT), B5h/(kBT), b(G8) is the
number of occupied bonds inG8, and the sum is over al
subgraphsG8 of G; the product extends over all clusters in
given G8 andnc(G8) is the number of sites in each cluste
WhenB50, Eq. ~1! reduces to the result of Ref.@15#. The
sites connected by occupied bonds are in the same cluste
spins in a cluster must be in the same direction, which m
2716 © 1999 The American Physical Society
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PRE 60 2717CLUSTER ANALYSIS AND FINITE-SIZE SCALING . . .
be up or down. UsingZN of Eq. ~1!, Hu found that the
spontaneous magnetization and the magnetic susceptib
of the Ising model are related to the percolation probabilityP
and the mean cluster size of the~two-state! BCPM, such that
the probability weight for the appearance of a subgraphG8
of b(G8) bonds andn(G8) clusters is given byp(G8,p)
5pb(G8)(12p)Nb2b(G8)2n(G8). Such a connection ensure
that the phase transition of the Ising model is the percola
transition of the BCPM. The extension of the probabil
weight p(G8,p) to a q-state Potts model is simply achieve
by replacing 2 withq in p(G8,p). From p(G8,p) we can
define

Ep~G,p!5 (
Gp8#G

p~Gp8 ,p!/ (
G8#G

p~G8,p!, ~2!

which is called the existence probability of the BCPM. He
the sum in the denominator is over all subgraphsG8 of G
and the sum in the numerator is restricted to all percola
subgraphsGp8 of G. In Ref. @16#, Hu and Chen found tha
Ep(G,p) has very good finite-size scaling behavior. In R
@9#, Hu, Chen, and Lin found thatEp(G,p) has a UFSSF.

In the present paper we use the Wolff algorithm@17# for
spin update and study the percolating properties of clus
on planar lattices with periodic boundary conditions for bo
directions. For the assignment of a bond-percolating clus
we consider free and periodic boundary conditions in
ity

n

g

.

rs

r,
e

vertical and horizontal directions, respectively; that is,
cluster that extends from the top row to the bottom row i
percolating cluster.

We first consider the fraction of lattice sites in the perc
lating clusters,c, and denote the probability distributio
function of c by f (c). The average value ofc gives the
percolation probabilityP,

^c&5E
0

1

c f~c!dc5P, ~3!

and plays the role of order parameter in the percolation pr
lem. To studyc in subgraphs with exactlyn percolating clus-
ters, we decomposef (c) by the number of percolating clus
ters,n; that is,

f ~c!5 (
n51

`

f n~c!. ~4!

We should note that

E
0

1

f n~c!dc5Wn , ~n51, . . . ,̀ ! ~5!

and
FIG. 1. Universal finite-size scaling functions for the Ising clusters on the sq, pt, and hc lattices.~a! D2
21f n(c)L2b/n andD2

21f (c)L2b/n

at the critical point as a function ofD2cLb/n; ~b! Wn as a function oftL1/n; ~c! D2^c&nLb/n andD2^c&Lb/n as a function oftL1/n; and ~d!
gcn(5^c&n

2/^c2&n) andgc(5^c&2/^c2&) as a function oftL1/n.
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(
n51

`

Wn512W05Ep~G,p!. ~6!

We may consider the quantity,

^c&n5E
0

1

c fn~c!dc, ~n51, . . . ,̀ !, ~7!

which is the fraction of lattice sites in then percolating clus-
ters. In other words, we decompose^c& by the number of
percolating clusters, such that

^c&5 (
n51

`

^c&n5P. ~8!

The probability distribution of the magnetization,p(m),
is an important quantity in the phase transition probl
@6,10#. Let us decomposep(m) by the number of percolating
clusters in the same way as inf (c),

p~m!5 (
n50

`

pn~m!. ~9!

Now we have the relation

E
21

1

pn~m!dm5Wn , ~n50, . . . ,̀ !. ~10!

It should be noted that the relation betweenf n(c) and
pn(m) is not a simple one, especially for a system with m
tiple percolating clusters. There are two type of clusters,
is, the cluster with up spins and that with down spins. W
may divide the fraction of lattice sites in percolating cluste
c, into two classes,c1 and c2 . By definition, c5c11c2

and, to the leading order,m;c12c2 . If there is only a
single percolating cluster,m;c1 or m;c2 ; thus, m2;c2

in the leading contribution. However, if there are two
more percolating clusters, the relation is not trivial, and t
is the origin of the complex structure ofp(m) for the lattices
with large aspect ratioa. Therefore, the study ofc and m
becomes more interesting in the case of multiple percola
clusters.

According to the theory of finite-size scaling@2#, if a
quantity Q has a singularity of the formQ(t);tv near the
criticality t50, then the corresponding quantityQ(L,t) for
the finite system with the linear sizeL has a scaling form
Q(L,t);L2v/nX(tL1/n), where n is the correlation-length
exponent and is 1 for the two-dimensional~2D! Ising model.
The finite-size scaling is also applicable to the distribut
function of Q. At the criticality t50, we have a finite-
size scaling form p(Q;L,t50);Lv/nY(QLv/n). Thus,
we expect the following finite-size scaling relation
Wn(t);Xn

a(tL1/n), ^c&n(t);L2b/nXn
b(tL1/n), f n(c;t50)

;Lb/nYn
a(cLb/n), and pn(m;t50);Lb/nYn

b(mLb/n), where
b is the order-parameter exponent and is 1/8 for the 2D Is
model.

The finite-size scaling functions usually depend on
lattice or other details of the system. However, with app
priate choices of nonuniversal metric factorsD1 andD2,
-
at
e
,

s

g

g

e
-

D2Q~L,t !5L2v/nX̂~D1tL1/n!, ~11!

p~Q;L,t50!5D2Lv/nŶ~D2QLv/n!, ~12!

the finite-size scaling functionsX̂,Ŷ could become universal
This concept of the UFSSF was first proposed by Privm
and Fisher@3#, and has been recently confirmed for the p
colation problem@5,8# and the Ising model@6,9#. We should
note that the UFSSF’s still depend on boundary conditio
@5#.

To study the finite-size scaling and the universality
f n(c), f (c), pn(m), and p(m), we calculatef n(c), f (c),
pn(m), p(m), Wn , ^c&n , ^c&, gcn , andgc for the BCPM on
sq, pt, and hc lattices whose aspect ratios approximately h
the proportions 1:A3/2:A3 and each kind of lattice has tw
linear dimensions; heregcn5^c&n

2/^c2&n , gc5^c&2/^c2&,
and the second moments ofc are defined as in Eqs.~7! and
~3!. We note thatgcn andgc have the same finite-size scalin
property as the Binder parameter@13#.

The calculatedD2
21f n(c)L2b/n and D2

21f (c)L2b/n, at
the critical point as a function ofD2cLb/n, are shown in Fig.
1~a!. The lattice sizes are given within the figure. The asp
ratio isa54 for the sq lattice, and corresponding equivale
ratios for other lattices. The calculatedWn , D2^c&nLb/n

~also D2^c&Lb/n), andgcn ~also gc), as a function oftL1/n

@ t5(T2Tc)/Tc#, are presented in Figs. 1~b!, 1~c!, and 1~d!,
respectively. The calculatedD2

21pn(m)L2b/n as a function

FIG. 2. ~a! D2
21pn(m)L2b/n at T5Tc as a function ofD2mLb/n.

~b! p2(m) at T5Tc is decomposed into three classes:p11(m),
p22(m), andp12(m).
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of D2mLb/n is shown in Fig. 2~a!. The metric factorsD1 and
D2 for the sq lattice are chosen as 1@18#. The values ofD1
for the pt and hc lattices are 1.0060.01, which are consisten
with the results of Ref.@9#; the values ofD2 for the pt and hc
lattices are 1.0260.01 and 0.9860.01, respectively. Since
we have estimatedD1 as 1.0060.01 for the pt and hc lat-
tices, we have omittedD1 in the horizontal axes of the fig
ures. Figures 1~a!–1~d! and Fig. 2~a! show that the calculated
quantities have very good finite-size scaling behavior and
universality is also well satisfied. We should note that
metric factorsD1 andD2 are the same for all quantities.

Figure 2~a! shows thatp(m) at T5Tc has a broad peak
centered atm50, in addition to two peaks of positive an
negativem for the system with the aspect ratioa54 for the
sq lattice. This is in contrast to the case ofa51 wherep(m)
has only two distinct peaks of positive and negativem. Such
a dependence ofp(m) on a has already been pointed out
Ref. @10#. From Fig. 2~a!, we see that the broad peak
p(m) centered atm50 mainly comes fromp2(m). There are
two types of Ising clusters, that is, the clusters with up sp
or the clusters with down spins. Therefore, if there are m
percolating clusters, the combination of the percolating cl
ters with up spins and those with down spins makes it p
sible for the total magnetization to become close to 0. I
known that the normalized fourth moment ofm, or the
Binder parameter, at the critical point depends on the as
ratio @10,19#. The origin of such a dependence can be attr
uted to the structure of many percolating clusters. To cla
this situation, we decomposep2(m) at T5Tc into three
classes,p11(m), p22(m), and p12(m), shown in Fig.
2~b!. We assign three peaks inp2(m) by the contribution
from p11(m), p22(m), and p12(m). Examples of snap-
shots of the Ising system with two percolating clusters
presented in Figs. 3~a! and 3~b!. In Fig. 3~a! both percolating
clusters are up; in Fig. 3~b! one percolating cluster is up an
another percolating cluster is down.

From Wn , we may calculate the average number of p
colating clusters bŷn&5(nnWn . At the critical point, the
values ofWn and ^n&, as a function of the aspect ratioa
5L1 /L2 , are plotted in Figs. 4~a! and 4~b!, respectively. We
see that̂ n& increases linearly witha for large a, which is

FIG. 3. Examples of snapshots of the Ising system with
aspect ratioa54. Up and down spins are represented by open
closed circles, and active bonds are represented by a solid
Percolating clusters are distinguished by the shaded areas. The
two percolating clusters with up spins in~a!, whereas one percolat
ing cluster is up and the other is down in~b!.
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similar to the case of random percolation@5,20#. The slope of
^n& versusa in Fig. 4~b! is approximately 0.5.

Following the study ofWn for random percolation by Hu
and Lin @5#, there have been many analytic and numeri
studies ofWn in different random percolation problems@21#;
it is of interest to extend such studies to the BCPM of t
Ising model. On the other hand, we can extend the stud
f n(c) and ^c&n to the random percolation problem. It is in
teresting to compare the results for the BCPM and those
the random percolation problem. We may also extend
present study to the bond-diluted or the site-diluted Is
model, which can be mapped into percolation models@22#.
The critical phenomena of the percolating properties of
Ising model are governed by the Ising fixed point~for ex-
ample,n51) whereas, at the percolation threshold, the cr
cal phenomena are governed by the random percolation fi
point (n54/3). The crossover from the Ising fixed point
the random percolation fixed point in the process of diluti
is highly interesting, especially for the properties depend
on the number of the percolating clusters. The studies
these directions are in progress.
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valuable discussions, and the Supercomputer Center of
ISSP, University of Tokyo, for providing the computing fa
cilities. This work was supported by a Grant-in-Aid for Sc
entific Research from the Ministry of Education, Scienc
Sports and Culture, Japan and by the National Science C
cil of the Republic of China~Taiwan! under Grant No. NSC
88-2112-M-001-011.
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FIG. 4. ~a! Wn at T5Tc as a function ofa5L1 /L2. ~b! ^n& at
T5Tc as a function ofa.
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