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Cluster analysis and finite-size scaling for Ising spin systems
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Based on the connection between the Ising model and a correlated percolation model, we calculate the
distribution function for the fractiond) of lattice sites in percolating clusters in subgraphs wigercolating
clusters,f,(c), and the distribution function for magnetizatiom) in subgraphs witm percolating clusters,
pn(m). We find thatf ,(¢c) andp,(m) have very good finite-size scaling behavior and that they have universal
finite-size scaling functions for the model on square, plane triangular, and honeycomb lattices when aspect
ratios of these lattices have the proportions/3/2:y/3. The complex structure of the magnetization distribu-
tion functionp(m) for the system with large aspect ratio could be understood from the independent orienta-
tions of two or more percolation clusters in such a sysfe3i063-651X99)09609-9

PACS numbgs): 05.50:+q, 64.60.Ak, 75.10:b

Universality and scaling are two important concepts in the In this paper, based on the connection between the Ising
modern era of critical phenomefid] and, for analyzing the model, i.e., the two-state Potts model and the two-state
simulation or experimental data of finite critical systems, oneBCPM, we use the Monte Carlo method to calculate the
often appeals to finite-size scalifig—4] where both critical  distribution function for the fractionq) of lattice sites in
exponents and finite-size scaling functions play an importanpercolating clusters in subgraphs witlpercolating clusters,
role. The universality of critical exponents has been wellf,(c), and the distribution function for magnetizatiom) in
known for a long tim¢g1], but the universality of finite-size subgraphs wittn percolating clustersp,(m). We find that
scaling functions received much attention only in recentf ,(c) andp,(m) have very good finite-size scaling behavior
years[5—10]. In 1984, Privman and Fisher first proposed theand that they have UFSSF's for the model on sq, pt, and hc
idea of universal finite-size scaling functiofi$FSSF’g with lattices when aspect ratios of these lattices have the propor-
nonuniversal metric factof]. In 1995 and 1996, Hu, Lin, tions 1:/3/2:/3. SinceW,, andP of the two-state BCPM for
and ChenHLC) [5] applied a histogram Monte Carlo simu- the Ising model may be calculated frdig(c), the universal-
lation method 11] to calculate the existence probabilfl] ity of finite-size scaling functions fow,, andP are related to
(also called the crossing probability2]) E,,, the percolation  the universality of finite-size scaling functions fiy(c). The
probability P, the probability for the appearance werco-  complex structure op(m) for the system with a large aspect
lating clustersW,, [5] of site and bond percolation on finite ratio could be understood from the independent orientations
square(sg), plane triangular(pt), and honeycomlthc) lat-  of two or more percolation clusters in such a system. Our
tices, whose aspect ratios approximately have the relativgork suggests many problems for further research.
proportions 15/3/2:/3 considered by Langlands al. [12]. The Hamiltonian of the Ising model on dn x L, lattice
Using nonuniversal metric factors, HLC found that the sixG of Ny, bonds is given by<{= —J3 jyoioj—hZjo;, where
percolation models have very nice UFSSF's gy, P, and  ¢g,=+1, J>0 and is the ferromagnetic coupling constant
W, near the critical point$5] and, at the critical point, the between the nearest-neighbor Ising spins, laislthe exter-
average number of percolating clusters increases linearlgal magnetic field. Using subgraph expansion, Hi]
with aspect ratios of the latticg¢$§]. Using the Monte Carlo showed that the partition function of the Ising model @n
simulation, Okabe and Kikuchi found UFSSF’s for the may be written as
Binder parameteg [13] and magnetization distribution func-
s\c/)ns p(m) of the Ising mod,el on pIanar Iatqpe[ﬁ], and Zy=eNo S pb(G") (1 — p)No=b(G")

ang and Hu found UFSSF'’s for dynamic critical phenom-
ena of the Ising modé€l7]. Based on the connection between
the g-state bond correlated percolation modBCPM) and ,
the g-state Potts mode[14] Hu, Chen, and Lin found Xcll;lter[z coshBne(G"))], @
UFSSF's forE, andW,, of the g-state BCPM without using
nonuniversal metric factorf9]. It is of interest to gain a wherep=1—e 2K, K=J/(kgT), B=h/(kgT), b(G’) is the
deeper understanding of the UFSSF’s Wy, and P for the  number of occupied bonds i6’, and the sum is over all
system with multiple percolating clusters. subgraph$s’ of G; the product extends over all clusters in a

givenG’ andn.(G") is the number of sites in each cluster.

WhenB=0, Eq.(1) reduces to the result of Rdfl5]. The
*Electronic address: okabe@phys.metro-u.ac.jp sites connected by occupied bonds are in the same cluster; all
TElectronic address: huck@phys.sinica.edu.tw spins in a cluster must be in the same direction, which may
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be up or down. UsingZy of Eq. (1), Hu found that the vertical and horizontal directions, respectively; that is, a
spontaneous magnetization and the magnetic susceptibililuster that extends from the top row to the bottom row is a
of the Ising model are related to the percolation probabiity percolating cluster.

and the mean cluster size of tttevo-state BCPM, such that We first consider the fraction of lattice sites in the perco-
the probability weight for the appearance of a subgrédh lating clusters,c, and denote the probability distribution
of b(G’) bonds andn(G’) clusters is given byr(G’,p) function of ¢ by f(c). The average value of gives the
=P (1—p)Ne~b(G)2N(G")  Such a connection ensures Percolation probabilityP,

that the phase transition of the Ising model is the percolation

transition of the BCPM. The extension of the probability 1

weight 7(G’,p) to ag-state Potts model is simply achieved (c)= fo cf(c)de=P, 3

by replacing 2 withq in 7(G’,p). From 7(G’,p) we can

defi
eline and plays the role of order parameter in the percolation prob-

lem. To studyc in subgraphs with exactly percolating clus-
Ep(G.p)= X m(Gp,p)/ > w(G'.p), (2 ters, we decomposic) by the number of percolating clus-
G,CG G'cG ters,n; that is,

which is called the existence probability of the BCPM. Here o
the sum in the denominator is over all subgra@sof G f(c)= E f ()
and the sum in the numerator is restricted to all percolating am1
subgraphsG;, of G. In Ref.[16], Hu and Chen found that
E,(G,p) has very good finite-size scaling behavior. In Ref.\we should note that
[9], Hu, Chen, and Lin found thd,(G,p) has a UFSSF.
In the present paper we use the Wolff algorithh] for 1
spin update and study the percolating properties of clusters f fo(c)de=W,, (n=1,...>) (5
on planar lattices with periodic boundary conditions for both 0
directions. For the assignment of a bond-percolating cluster,
we consider free and periodic boundary conditions in theand
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FIG. 1. Universal finite-size scaling functions for the Ising clusters on the sq, pt, and hc la#io®s. f,(c)L ~#'* andD, *f(c)L #”
at the critical point as a function @,cL?'”; (b) W, as a function otLY"; (c) D,(c),L?"* andD,(c)L?'" as a function otLY”; and (d)
gen(=(c)2/(c?),) andg.(=(c)?/(c?)) as a function otL*".
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- D,Q(L,t)=L~“/*X(D,tLY), (12)
2, Wo=1-Wo=E;(G,p). 6) ? '
p(Q;L,t=0)=D,L“"Y(D,QL""), (12)
We may consider the quantity, R
the finite-size scaling functions,Y could become universal.
1 This concept of the UFSSF was first proposed by Privman
(Chn= fo cfo(c)de, (n=1,... ), (7)  and Fishef3], and has been recently confirmed for the per-
colation probleni5,8] and the Ising mod€l6,9]. We should
which is the fraction of lattice sites in thepercolating clus- NOte that the UFSSF's siill depend on boundary conditions

ters. In other words, we decompo by the number of (5]
percolating clusters, such that poce) by To study the finite-size scaling and the universality of

fa(c), f(c), pa(m), and p(m), we calculatef,(c), f(c),
o pn(m), p(m), W,, {c),, {c), gcn, andg, for the BCPM on
(c)= E (c),=P. (8 sq, pt, and hc lattices whose aspect ratios approximately have
n=1 the proportions 1y3/2:y/3 and each kind of lattice has two
o o linear dimensions; herg.,=(c),?/(c?),, g.=(c)?/{c?),
The probability distribution of the magnetizatiop(m), and the second moments ofare defined as in Eq$7) and

is an important quantity in the phase transition problem(g)_v\/e note thag., andg. have the same finite-size scaling
[6,10]. Let us decomposp(m) by the number of percolating property as the Binder parame{ds3].

clusters in the same way as fic), The Ca|cu|atedD2—1fn(C)Lfﬁ/V and szlf(c)l_fﬁ/v, at
o the critical point as a function db,cL#”, are shown in Fig.
_ 1(a). The lattice sizes are given within the figure. The aspect
m) = m). 9 7 ; . .
p(m) nzo P(m) © ratio isa=4 for the sq lattice, and corresponding equivalent

ratios for other lattices. The calculatéd,, D,(c),L?"”
Now we have the relation (alsoDy(c)LP'"), andg,, (alsog.), as a function otL”
[t=(T—T.)/T.], are presented in Figs(d), 1(c), and 1d),

fl D (m)dm=W.. (n=0.... ). (10 respectively. The calculated, *p,(m)L 7" as a function
_l : : i

It should be noted that the relation betwegjfc) and i 3, ; zg 2;::;24 g, @
p,(m) is not a simple one, especially for a system with mul- . - 03 o pt 419x121 2® 1
tiple percolating clusters. There are two type of clusters, that = 5 o8 © pt 208x60 :3 §
is, the cluster with up spins and that with down spins. We = 0.5k 0 & o hc 500x72 F R }
may divide the fraction of lattice sites in percolating clusters, & ™ ae o o hc 250x36 S o
¢, into two classes¢, andc_. By definition,c=c, +c_ g T " _, Pi(m) A
and, to the leading ordem~c,—c_. If there is only a T T _5‘: 1
single percolating clustem~c, or m~c_ ; thus,m?~c? o ) K9
in the leading contribution. However, if there are two or
more percolating clusters, the relation is not trivial, and this | @45, . .o SRREtE ., . v
is the origin of the complex structure p{m) for the lattices Qpuewenass™  —pg(m) 7 s,
with large aspect rati@. Therefore, the study of and m -2 0 2
becomes more interesting in the case of multiple percolating D, mLPY

2

clusters. T T T

According to the theory of finite-size scalif@], if a 0.3k a E (b) |
quantity Q has a singularity of the forn@(t)~t® near the : . ® sq 576x144 .
criticality t=0, then the corresponding quanti®(L,t) for ., © sq 288x72 .
the finite system with the linear side has a scaling form 3 . r"
Q(L,t)~L~“/"X(tL¥™), where v is the correlation-length —0.2F s p(m) 2 1
exponent and is 1 for the two-dimensioaD) Ising model. E M
The finite-size scaling is also applicable to the distribution Z“_‘ . w ey =
function of Q. At the criticality t=0, we have a finite- 0.1 ()%,
size scaling form p(Q;L,t=0)~L®*Y(QL“"). Thus,
we expect the following finite-size scaling relations:
Wo(D)~X3(LY7),  (c)n(t)~L AXE(tL),  f4(c;t=0)

~LA"Y3(cLP"), and p,(m;t=0)~L""YB(mL?'"), where
B is the order-parameter exponent and is 1/8 for the 2D Ising
model.

The finite-size scaling functions usually depend on the FIG. 2. (a) D, *p,(m)L~#'* at T=T, as a function oD ,mL*"".
lattice or other details of the system. However, with appro<(b) p,(m) at T=T, is decomposed into three classes;, (m),
priate choices of nonuniversal metric fact@s and D, p__(m), andp, _(m).

m LPY
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FIG. 3. Examples of snapshots of the Ising system with the
aspect ratim=4. Up and down spins are represented by open and
closed circles, and active bonds are represented by a solid line.
Percolating clusters are distinguished by the shaded areas. There are (b) .
two percolating clusters with up spins (a), whereas one percolat-
ing cluster is up and the other is down (in).

<n>
N
T
L]
L

of D,mL#" is shown in Fig. 2a). The metric factor®, and
D, for the sq lattice are chosen ag18]. The values oD
for the pt and hc lattices are 1.68®.01, which are consistent
with the results of Ref.9]; the values oD, for the pt and hc .
lattices are 1.020.01 and 0.980.01, respectively. Since
we have estimate®, as 1.00-0.01 for the pt and hc lat- 0 ' ' ' y '
tices, we have omitte®, in the horizontal axes of the fig-
ures. Figures (B)—1(d) and Fig. Za) show that the calculated
quantities have very good finite-size scaling behavior and the FIG. 4. (@ W, at T=T, as a function ofa=L,/L,. (b) (n) at
universality is also well satisfied. We should note that theT =Tc as a function of.
metric factorsD, andD, are the same for all quantities.

Figure 2a) shows thatp(m) at T=T, has a broad peak similar to the case of random percolati?20]. The slope of
centered am=0, in addition to two peaks of positive and (n) versusa in Fig. 4(b) is approximately 0.5.
negativem for the system with the aspect rac=4 for the Following the study of/,, for random percolation by Hu

sq lattice. This is in contrast to the caseaof 1 wherep(m)  gnq |in[5], there have been many analytic and numerical
has only two distinct peaks of positive and nege_mweSuch . studies ofW, in different random percolation problerf1];
a dependence gi(m) on a has already been pointed out in j; ig of interest to extend such studies to the BCPM of the

Ref. [10]. From Fi_g. Za),_ we see that the broad peak of Ising model. On the other hand, we can extend the study of
p(m) centered am=0 mainly comes fronp,(m). There are ¢ ¢y and(c), to the random percolation problem. It is in-

two types of Ising clusters, that is, the clusters with up Spin§eregting to compare the results for the BCPM and those for
or the clusters with down spins. Therefore, if there are man he random percolation problem. We may also extend the
percolating clusters, the combination of the percolating clus:

) ; . . ) present study to the bond-diluted or the site-diluted Ising
ters with up spins and those with down spins makes it poSp,qe| \which can be mapped into percolation modek.
sible for the total magnetization to become close to O. It iSpp 4 critical phenomena of the percolating properties of the

known that the normalized fourth moment af, or the Ising model are governed by the Ising fixed poffdr ex-

Binder parameter, at the critical point depends on the aspeci e ,— 1) whereas, at the percolation threshold, the criti-

ratio[10,19. The origin of such a dependence can be attrib-,| hhanomena are governed by the random percolation fixed

Ut?d tp the_: structure of many percolating clustgrs. To Clarifypoint (v=41/3). The crossover from the Ising fixed point to
this situation, we decomposg,(m) at T=T,. into three

S the random percolation fixed point in the process of dilution
classes,p. .(m), p__(m), and p,_(m), shown in Fig. 5 highiy interesting, especially for the properties depending
2(b). We assign three peaks py(m) by the contribution

on the number of the percolating clusters. The studies in
from p, . (m), p__(m), andp, _(m). Examples of snap-

! . X these directions are in progress.
shots of the Ising system with two percolating clusters are

presented in Figs.(8) and 3b). In Fig. @) both percolating We would like to thank M. Kikuchi and K. Kaneda for
clusters are up; in Fig.(B) one percolating cluster is up and valuable discussions, and the Supercomputer Center of the
another percolating cluster is down. ISSP, University of Tokyo, for providing the computing fa-

From W, , we may calculate the average number of per-ilities. This work was supported by a Grant-in-Aid for Sci-
colating clusters byn)=X.,nW, . At the critical point, the entific Research from the Ministry of Education, Science,
values of W, and({n), as a function of the aspect ratso  Sports and Culture, Japan and by the National Science Coun-
=L,/L,, are plotted in Figs. @) and 4b), respectively. We cil of the Republic of ChindTaiwan under Grant No. NSC
see that(n) increases linearly witta for large a, which is  88-2112-M-001-011.
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